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We present new numerical models for computing transitional or rarefied gas flows
as described by the Boltzmann-BGK and BGK-ES equations. We first propose a new
discrete-velocity model, based on the entropy minimization principle. This model
satisfies the conservation laws and the entropy dissipation. Moreover, the problem
of conservation and entropy for axisymmetric flows is investigated. We find alge-
braic relations that must be satisfied by the discretization of the velocity derivative
appearing in the transport operator. Then we propose some models that satisfy these
constraints. Owing to these properties, we obtain numerical schemes that are eco-
nomic, in terms of discretization, and robust. In particular, we develop a linearized
implicit scheme for computing stationary solutions of the discrete-velocity BGK and
BGK-ES models. This scheme is the basis of a code which can compute high altitude
hypersonic flows, in 2D plane and axisymmetric geometries. Our results are analyzed
and compared to other methods.c© 2000 Academic Press
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1. INTRODUCTION

For the simulation of gas flows in rarefied or transitional regimes, there mainly exist two
classes of methods. The first one is a probabilistic approach, such as the classical direct
simulation Monte Carlo method (DSMC). The second approach is called deterministic. It
consists in numerically solving the kinetic equation, namely the Boltzmann equation.

The DSMC method is the most often used in engineering applications. But due to its
particular nature, this method is still expensive for some flows like recirculation problems
or near continuum flows. However, it is worth mentioning the recent approach of Pareschi
and Caflisch [28] that proposes a modification of DSMC to correct this problem. But
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the probabilistic nature of DSMC also leads to noise charged solutions. The deterministic
approaches are more accurate (see Rogier and Schneider [30], Buet [11], and Ohwada [27]),
but they are very expensive in terms of computational time, especially due to to the quadratic
cost of the velocity discretization of the collision operator.

A reduction of this cost can be obtained by considering simplified models of the Boltz-
mann equation, like the Bathnagar–Gross–Krook model (BGK)

∂t f + v · ∇x f = 1

τ
(M [ f ] − f ).

This model [5] is known to be sufficient for numerous situations, even in some cases where
the gas is far from equilibrium (see [18]). Some drawbacks of this model, such as the
incorrect value of the Prandtl number, can be corrected by modified models. A lot of works
have been devoted to numerical approximations of the BGK equation, essentially by the
discrete-ordinate method (see Yang and Huang [36] and Aokiet al.[3] and their references),
but also by particle methods (see Issautier [20]). However, to our knowledge, none of these
methods satisfy at the discrete level the macroscopic properties known as conservation laws
and dissipation of entropy.

In this work, we are essentially concerned with developing numerical methods that are
conservative and entropic. For that reason, this paper presents three distinct points. First
we present a robust velocity discretization of the BGK and BGK–ellipsoidal-statistical
(BGK-ES) collision operators. Then the velocity discretization of the transport operator is
considered, especially for cylindrical coordinates. These two points give us discrete-velocity
models of BGK and BGK-ES equations that are discretized in space and time in the last point.

For the velocity discretization of the BGK collision operator, the main problem is the
approximation of the Maxwellian distribution. Many works use precise quadratures of
Gauss–Hermite type (see [3, 36]), but despite the accuracy of their quadratures, these meth-
ods lack the properties of conservation and dissipation of entropy. This makes necessary a
fine velocity mesh to ensure robust algorithms, which then are expensive. We have proposed
in [26] a method based on an entropy minimization principle, which gives a conservative
and entropic discrete BGK collision operator. Here, we advance the work of [26] and gen-
eralize the method to the BGK-ES operator. This allows us to reach correct Prandtl number
in the hydrodynamic limit.

The velocity discretization of the transport operator is trivial in Cartesian coordinates,
but not in cylindrical coordinates. In fact, the cylindrical description yields inertia terms
that are velocity derivatives of the distribution function. This problem is important to sim-
ulate axisymmetric flows, but to our knowledge, few articles exist about the numerical
approximation of this operator. One of the first works is due to Bergers in [6] (see also
his references). He approximates the inertia terms by assuming that they are equal to that
given by a Maxwellian distribution. However, this assumption is not valid for strong kinetic
nonequilibrium, as with strong shock waves normal to the radial direction. In the works of
Shakhov [31], Soneet al. [35], and Larina and Rykov [22], the inertia terms are directly
discretized, but one or all the properties of positivity, conservation, and entropy are lost.
Consequently, these methods may lack robustness and are restricted to simple 1D or 2D
axisymmetric flows such as in circular pipes or between two coaxial cylinders.

Here we follow the same velocity discretization approach of the previous authors but we
put in evidence the properties that should be satisfied by the discrete inertia terms so as to
ensure conservation and entropy. We propose some corrections to existing methods to make
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them conservative. We also propose new discretizations that satisfy positivity of solution,
conservation, and entropy. To our knowledge, it is the first time that discretizations simul-
taneously possessing all these properties are presented. Moreover, we point out that these
discretizations of the transport equation are independent of the collision term. Therefore
they may be applied to a large class of kinetic equations as Boltzmann or Fokker–Planck
equations.

The velocity discretization of the collision and transport operator leads to a so-called
discrete-velocity model (DVM). This DVM must be discretized in space and time. First,
we present an explicit scheme that inherits all the properties of the discrete-velocity model.
However, in view of steady computations, the CFL condition of this scheme is restrictive in
dense regimes (whereτ is small) and in high-velocity regimes. To overcome this difficulty,
there exist three different methods. First, many authors directly use a discretization of the
stationary equation with fixed point techniques (see [3] and Babovski [4]). The drawback is
that this method may converge very slowly (see a comparison in [26]). Another quite recent
approach consists in developing schemes that are robust in the fluid dynamic limit (see Jin
and Levermore [21], Gabettaet al. [17], and Caflischet al. [12]), but the problem of high
velocity regimes does not seem to be resolved by these methods.

Our approach is a classical CFD technique which consists in developing a fully linearized
implicit scheme, thus stable for any arbitrary relaxation time and any large velocity. A similar
technique has been used by Yang and Huang [36], but in their work, only the negative term
− f of the collision operator is implicit. Our method involves solving a very large linear
system, for which we propose an iterative solver. We use the sparse structure of the different
matrices involved in the system, related to the different role of space and velocity variables.
Our solver is then a kind of coupling between Jacobi and Gauss–Seidel methods. Our
linearized implicit scheme appears to be very fast and robust for computing steady flows,
for both dense and high speed regimes. We also present an adaptation of this scheme to
curvilinear meshes and axisymmetric flows.

The remainder of the paper follows logically. In the next section, some properties of the
BGK and BGK-ES equations are recalled, as well as a short list of notations. In Section 3, we
present our velocity discretization of the BGK and BGK-ES collision operators. In Section 4,
we discuss the problem of the velocity discretization of the transport operator in cylindrical
coordinates. Then in Section 5, we present our numerical schemes for discretizing our DVM
in space and time. The linearized implicit scheme is derived from the explicit scheme and
the linear solver algorithm is precisely described. The extension to axisymmetric DVM is
also presented. Finally, the last section shows numerous numerical results for subsonic,
supersonic, and hypersonic flows. Both plane and axisymmetric cases are presented. Plane
flow computations show the difference between BGK and BGK-ES, the advantage of our
approach in comparison with classical DSMC computations for recirculation problems,
and the ability of our method for computing hypersonic flows. For axisymmetric flows, the
different velocity discretizations are compared on a simple 1D case and the potentiality of
our method is demonstrated on a 2D flow around a sphere. Whenever it is possible, our
results are compared to DSMC and Navier–Stokes computations.

2. BGK EQUATION

The BGK equation is a simplified model of the Boltzmann equation [13] for rarefied gases,
which describes the evolution of the mass densityf (t, x, v) of monoatomic molecules that
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have position x= (x, y, z) and velocityv = (vx, vy, vz)∈R3

∂t f + v · ∇x f = 1

τ
(M [ f ] − f ). (1)

The collisions are modeled here by the relaxation off toward the Maxwellian equilibrium
distributionM [ f ] (cf. [5]). This distribution only depends onv and on the fluid quantities—
densityρ, mean velocityu= (ux, uy, uz), and temperatureT—that are defined by the first
five moments off ,

ρ = 〈 f 〉, ρu = 〈v f 〉, E =
〈

1

2
|v|2 f

〉
= 1

2
ρ|u|2+ 3

2
ρRT,

where〈g〉= ∫ g(v) dv denotes the integral of any vectorial or scalar functiong. These
moments are called the density, momentum, and total energy of the gas. We denote by
m(v)= (1, v, 1

2|v|2)T the vector of microscopic quantities mass, momentum, and kinetic
energy (normalized by the mass). Similarly we denote byρ= (ρ, ρu, E)T the vector
of the first five moments off . These notations yield a more compact definition of the
moments:

ρ = 〈m f 〉.

Note that throughout this paper, bold symbols are only used for vectors ofR5 such as, for
example,ρ andm(v). SinceM [ f ] depends only onρ, it will be denoted byM [ρ] in the
following. An expression ofM [ρ] is

M [ρ] = exp(α ·m(v)), with α=
(

log

(
ρ

(2πRT)3/2

)
− |u|

2

2RT
,

u

RT
,− 1

RT

)T

. (2)

By definition,M [ρ] has the same moments asf and it can easily be seen that this distribution
is the unique solution of the following entropy minimization problem (see, for instance,
[29]),

(P) H(M [ρ]) = min{H(g), g ≥ 0 s.t. 〈mg〉 = ρ}, (3)

whereH(g)=〈g logg〉 is the kinetic entropy of the distributiong. This simply means that
the local equilibrium state minimizes the entropy of all the possible states leading to the
same macroscopic properties.

With this characterization of the local Maxwellian equilibrium, the following properties
of conservation of density, momentum, energy, and dissipation of entropy may easily be
proved:

∂t 〈m f 〉 + ∇x〈mv f 〉 = 0, (4)

∂t 〈 f log f 〉 + ∇x〈v f log f 〉 ≤ 0. (5)

Furthermore, it is possible to check that solutions of (1) are nonnegative. We point out
that in a numerical scheme, the preservation of these properties is essential to a robust and
economic discretization.
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The relaxation time of the BGK model is defined by

τ−1 = cρT1−δ, (6)

whereδ is the exponent of the viscosity law of the gas (see [14]). It depends on the molecular
interaction potential and on the type of the gas. The constantc is RTδref/µref, whereµref is
the viscosity of the gas at the reference temperatureTref. We refer to a table in [7] for some
values ofδ andµref of different gases.

The problem of this single relaxation time in the BGK model is that the collision operator
leads to unrealistic values of the transport coefficients at the hydrodynamic limit. In particu-
lar, the Prandtl numberPr is then equal to 1, instead of the value2

3 given by both experimental
data and a Chapman–Enskog expansion of the Boltzmann equation for monoatomic gases.
There exist several BGK-like relaxation models that fit the correct Prandtl number (see the
models of Shakhov [32], Liu [24], Holway [19], Bouchut and Perthame [9], and Struchtrup
[34]). However, few models respect each constraint of positivity, conservation of moments,
and dissipation of entropy, as well as a low computational cost. Here, we consider the
BGK-ES model introduced by Holway [19] where the collision operator is now

C( f ) = 1

τ
(G[ f ] − f ).

In this model, the Maxwellian equilibrium is replaced by an anisotropic GaussianG[ f ]
defined by

G[ f ] = ρ√
det(2πT ) exp

(
−1

2
(v − u)TT −1(v − u)

)
,

whereρT = 1
PrρRT I+ (1− 1

Pr )ρ2 is a linear combination of the stress tensorρ2=
〈(v− u)⊗ (v− u) f 〉 and of the Maxwellian isotropic stress tensorρRT I=〈(v− u)⊗
(v− u)M [ρ]〉. The relaxation time is now defined byτ−1= 1

Pr cρT1−δ. The Gaussian sat-
isfies the following properties:

〈mG[ f ]〉 = 〈m f 〉, 〈(v − u)⊗ (v − u)G[ f ]〉 = ρT , (7)

H(G[ f ]) = min{H(g), g ≥ 0, 〈(1, v, v ⊗ v)T g〉 = (ρ, ρu, ρu⊗ u+ ρT )T }. (8)

The model is thus positive and conservative, and the entropy dissipation property
(H-theorem) has recently been proved by Andri`eset al. [2]. Also note that the fundamental
equilibrium property

C( f ) = 0⇔ f = M [ρ]

is well satisfied. In factC( f )= 0 impliesG[ f ]= f ; thus2= 1
Pr RT I+ (1− 1

Pr )2. Con-
sequently,2= RT I and thereforef =G[ f ]=M [ρ].

Owing to the structure of the BGK-ES operator, which is very close to that of the BGK
operator, our numerical algorithms will be quite similar.

In this paper, the diffuse reflection is used for all gas-surface interactions. Incident
molecules are assumed to be absorbed by the wall and re-emitted with the temperature
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Tw of the wall and with a random velocity, according to a Maxwellian distribution centered
on the velocity of the walluw,

f (t, x, v) = φ(x)M [ρw](v), v · n(x) > 0, (9)

whereρw = (1, uw, 1
2|uw|2+ 3

2 RTw), n(x) is the vector normal to the wall (directed toward
the gas), andφ(x) is a parameter such that the mass flux across the wall is zero

φ(x) = −
∫
v·n(x)<0 v · n(x) f (t, x, v)dv∫
v·n(x)>0 v · n(x)M [ρw](v) dv

.

We refer to [13] for a more detailed presentation of this reflection.

3. CONSERVATIVE AND ENTROPIC VELOCITY DISCRETIZATION

OF THE COLLISION OPERATOR

Let K be a set ofNv multi-indexes ofZ3, and letV be a discrete-velocity grid ofNv
pointsvk ∈R3 indexed by k= (k, l ,q)∈K and defined by

vk =
(
vk

x, v
l
y, v

q
z

) = (k1vx, l1vy,q1vz),

where(1vx,1vy,1vz) are three positive numbers. Thecontinuousvelocity distribution f
is then replaced by anNv-vector fK(t, x)= ( fk(t, x))k∈K where each componentfk(t, x)
is assumed to be an approximation off (t, x, vk). These components will sometimes be
denoted byfk,l ,q(t, x). The fluid quantities are thus given as in the continuous case, except
that integrals onR3 are replaced by discrete sums onV. That is, setting

〈g〉K =
∑
k∈K

gk1vx1vy1vz

for any vectorg ∈ RNv , we can define discrete moments and discrete entropy offK by

ρK = 〈m fK〉K =
∑
k∈K

m(vk) fk1vx1vy1vz,

HK( fK) = 〈 fK log fK〉K.

Our discrete velocity BGK model follows as a set ofNv equations,

∂t fk + vk · ∇x fk = 1

τ
(Ek[ρK] − fk), ∀k ∈ K, (10)

and the main problem is to define an approximationEK[ρK] of the Maxwellian equilibrium
M [ρ] such that conservation properties (4) and the entropy property (5) still hold. First we
note that the natural approximation (used by Yang and Huang in [36])

Ek[ρK] = M [ρK](vk), ∀k ∈ K (11)

cannot satisfy these requirements. Instead, we propose to use the discrete version of the
entropy minimization problem (3). LetEK[ρK] be defined by the minimum of discrete
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entropy, with the constraints that it must have the same moments asfK; i.e.,EK[ρK] is the
solution of the following problem

(PK) HK(EK[ρK]) = min
{

HK(g), g ≥ 0 ∈ RNv s.t. 〈mg〉K = ρK
}
.

Obviously, it must be checked that this problem has a unique and easily solvable solution
(directly solving(PK) in RNv would be numerically expensive). In the continuous case,
the conditionρ, T > 0 is sufficient to characterize the solution of (3) by the Maxwellian
distribution. However, this is not true for the discrete case where explicit computations are
not possible. To this end, we have then proved in [15, 26] that under a natural assumption
on V, the discrete equilibriumEK[ρK] has an exponential form if, and only if, astrict
realizabilitycondition is fulfilled byρK:

THEOREM3.1. LetρK be a vector inR5 such that the setXρK={g≥0∈RNv s.t. 〈mg〉K=
ρK} of nonnegative discrete distributions realizingρK is not empty. Then, the problem(PK)
has a unique solutionEK[ρK] called discrete equilibrium. Moreover, we assume thatV has
at least three points in each direction. Then there exists a unique vectorα in R5 such that
the following exponential characterization holds,

Ek[ρK] = exp(α ·m(vk)), ∀k ∈ K,

if and only ifρK is strictly realizable, i.e.,

∃g ∈ XρK s.t. g > 0. (12)

Remark 3.1. Due to the above result, the computation ofEK[ρK] does not require the
solution of an expensive minimization problem inRNv . Instead, only the computation of
the vectorα in R5 is necessary. This vectorα is the unique solution of the nonlinear set of
five equations

〈mexp(α ·m)〉K = ρK,

sinceEK[ρK] realizesρK. This set may be solved by a Newton algorithm (see Section 5).
Note that for plane flows, we haveuz= 0. Then this set reduces to four equations only, and
we setm(v)= (1, vx, vy,

1
2|v|2) andρ= (ρ, ρux, ρuy, E).

Remark 3.2. Note that the case whereXρK is empty is not considered here, since the
model implicitly contains the fact thatρK is realized byfK ≥ 0. However, the condition of
strict realizability (12) is more restrictive than the natural conditionρK, TK > 0 (see [26]
for a counterexample). But, as it is stated in the following theorem, it is sufficient to have
an initial condition f 0

K strictly positive to ensure thatρK is always strictly realizable.

THEOREM 3.2. Let f0
K be a strictly positive vector ofRNv . Consider the initial value

problem associated with model(10), whereEK[ρK] is defined by(PK). If this problem
has a solution fK, then the solution fK remains strictly positive and thus the discrete
equilibrium always has the formEk[ρK]= exp(α ·m(vk)). Moreover, the model satisfies
the conservation laws and the dissipation of entropy

∂t 〈m fK〉K +∇x〈mv fK〉K = 0, ∂t 〈 fK log fK〉K +∇x〈v fK log fK〉K ≤ 0.
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Note here that these properties permit us to obtain existence and uniqueness results for
model (10), as well as convergence toward the continuous BGK (see [25]).

Velocity discretization of the BGK-ES model.Following the previous approach, we
define the approximationGK[ fK] of G[ f ] by a discrete version of the generalized entropy
minimization problem (8). Then we have

Gk[ fK] = exp(Eα · Em(vk)),

where Em(vk)= (1, vk, vk ⊗ vk)
T and Eα is the unique solution of the following nonlinear

system of ten equations (six only for plane flows):

〈 Emexp(Eα · Em)〉K = (ρK, ρKuK, ρKuK ⊗ uK + ρTK).

However, note that the modified tensorTK should now be defined as

TK = 1

Pr
5K +

(
1− 1

Pr

)
2K,

whereρK5K=〈(v− uK)⊗ (v− uK)EK[ρK]〉K is the stress tensor of the discrete equilib-
riumEK[ρK]. As opposed to the continuous case,ρK5K is different fromρKRTK I because
of a lack of symmetry and invariance of the discrete velocity set. This modification is nec-
essary to ensure the equilibrium property, i.e., that the discrete collision operator is zero if
and only if fK= EK[ρK]. The discrete-velocity BGK-ES model is thus positive and conser-
vative, but the entropy property seems more difficult to be rigorously obtained. Actually,
the fact that the entropy ofG[ f ] is lower than the entropy off relies for the continuous
case on analytic expressions that are not available in the discrete case (see [2]). But as it
will be shown in the next sections, computations using this model are possible and give
accurate results.

Discretization of the diffuse reflection.Using our approach, this boundary condition can
be very naturally discretized. The Maxwellian of the wallM [ρw] in (9) is approximated by
the discrete equilibriumEk[ρw] associated toρw. We set

fk(t, x) = φ(x)Ek[ρw], vk · n(x) > 0. (13)

The parameterφ(x) must be determined so as to avoid a mass flux across the wall. In the
discrete frame, this yields

φ(x) = −
∑

vk·n(x)<0 vk · n(x) fk(t, x)1vx1vy1vz∑
vk·n(x)>0 vk · n(x)Ek[ρw]1vx1vy1vz

. (14)

4. CONSERVATIVE AND ENTROPIC DISCRETIZATION OF THE TRANSPORT

OPERATOR: AXISYMMETRIC CASE

In this section, we consider a general kinetic equation

∂t f + v · ∇x f = C( f ) (15)
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that could be BGK or BGK-ES, as well as a Boltzmann or Fokker–Planck equation. First
we make some remarks about a cylindrical coordinate’s transformation of (15) in view of
the discretization and about conservation laws and dissipation of entropy. Then we give
algebraic relations that should be satisfied by any finite difference discretization of the
transport operator, independent of the discrete collision operator. We review some existing
discretizations and our new schemes are presented. Last, an application to the BGK equation
is given.

4.1. Conservation Laws and Entropy Dissipation

The axisymmetric formulation of Eq. (15) is obtained as follows. Space variables are
written in a system of cylindrical coordinates(x, y, z)= (x, r cosϕ, r sinϕ), and in order
to use the axial symmetry in space, we define the radial and azimuthal velocitiesvr andvϕ
by

vr = vy cosϕ + vz sinϕ, vϕ = −vy sinϕ + vz cosϕ.

The assumption of axial symmetry now reads∂ϕ f (t, x, r, ϕ, vx, vr , vϕ)= 0, and the Cartesian
equation (15) yields

∂t f + vx∂x f + vr ∂r f + v
2
ϕ

r
∂vr f − vr vϕ

r
∂vϕ f = C( f ). (16)

Note the velocity gradients off in this equation are in fact inertia terms due to the local
coordinate system.

We feel it necessary to explain why this formulation is not convenient for a velocity
discretization. The characteristic curves of transport equation (16) are more complex than
for the Cartesian equation, because they are now curves ofR4 defined by

ẋ(t) = vx, ṙ (t) = vr , v̇r (t) =
v2
ϕ

r
, v̇ϕ(t) = −vr vϕ

r
.

However, it can easily be seen that they satisfyvr (t)2+ vϕ(t)2= cst, which means that in the
plane(vr , vϕ), the characteristic curves are circles. Consequently, one can observe that in
view of the discretization of (16), the bounded domain that would replace the velocity space
should have a circular section in the plane(vr , vϕ). Otherwise, due to the intersection of
the characteristic curves with the boundary of the domain, boundary conditions in velocity
would be needed. Therefore, it appears that, for a future discretization, a circular coordinate
system for the radial and azimuthal velocities is more relevant than the previous rectangular
system. As Sugimoto and Sone [35], we defineζ andω by (vr , vϕ)= (ζ cosω, ζ sinω),
and Eq. (16) now reads as a much more convenient equation:

∂t f + vx∂x f + ζ cosω∂r f − ζ sinω

r
∂ω f = C( f ). (17)

A completely conservative form equation can be obtained:

∂t r f + vx∂xr f + ζ cosω∂r r f − ζ∂ω(sinω f ) = rC( f ). (18)
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Now, we define the four moments density, axial and radial momentums, and total energy
by

(ρ, ρux, ρur , E)T =
∫ (

1, vx, ζ cosω,
1

2

(
v2

x + ζ 2
))T

f ζ dvx dζ dω. (19)

The components of the stress tensor and of the heat flux are denoted byρ2xx, ρ2rr , ρ2xr ,
ρ2ϕϕ , andqx,qr . For the sake of simplicity, we have assumed thatf is even inω (i.e.,
f (ω)= f (−ω)); thus the tangential quantitiesuϕ,2rϕ,2xϕ,qϕ are zero. This assumption,
which is equivalent tof (vr , vϕ)= f (vr ,−vϕ), is valid for flows without incidence past
axisymmetric bodies. The conservation laws and the dissipation of entropy are obtained by
integrating (18) multiplied by(1, vx, ζ cosω, 1

2(v
2
x + ζ 2), 1+ log f ). This yields

∂t rρ + ∂xrρux + ∂r rρur = 0, (20a)

∂t rρux + ∂xr
(
ρu2

x + ρ2xx
)+ ∂r r (ρuxur + ρ2xr ) = 0, (20b)

∂t rρur + ∂xr (ρuxur + ρ2xr )+ ∂r r
(
ρu2

r + ρ2rr
) = ρ2ϕϕ, (20c)

∂t r E + ∂xr (ux E + ρ(2xxux +2xr ur )+ qx)

+ ∂r r (ur E + ρ(2xr ux +2rr ur )+ qr ) = 0, (20d)

∂t r
∫

f log f ζ dvx dζ dω + ∂xr
∫
vx f log f ζ dvx dζ dω

+ ∂r r
∫
ζ cosω f log f ζdvx dζ dω ≤ 0. (20e)

In view of the velocity discretization of (18), we now discuss the intermediate steps
between (18) and (20a–20e). For instance, for the density, integrating (18) first yields

∂t rρ + ∂xrρux + ∂r rρur =
∫
ζ∂ω(sinω f )ζ dvx dζ dω + r

∫
C( f )ζ dvx dζ dω.

But the contribution ofC( f ) is zero, as well as the contribution of∂ω, since we have∫ 2π

0
∂ω(sinω f ) dω = 0. (21a)

Therefore we find (20a). Forρux and E, Eqs. (20b) and (20d) are obtained for the same
reasons. Forρur , Eq. (20c) is due to the following contribution of∂ω:∫ 2π

0
cosω∂ω(sinω f ) dω =

∫ 2π

0
sin2ω f dω. (21b)

For the entropy, note that by assumption, the contribution ofC( f ) is negative. Moreover,
the contribution of∂ω is found to satisfy∫ 2π

0
∂ω(sinω f ) log f dω ≤

∫ 2π

0
cosω f dω. (21c)

In fact, this relation is an equality, but the inequality is sufficient to obtain (20e). Finally,
note that the uniform flows int, x, r, ω are a solution of (18). This is due to the trivial
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relation

∂ω(sinω) = cosω. (21d)

Consequently, it appears that analyzing the possible discretizations of the terms due to∂ω

in the transport operator is essential to a conservative and entropic discrete-velocity model.
In fact, this short study suggests that it is sufficient to satisfy some discrete relations similar
to (21a–21d). Obviously, this problem does not appear in Cartesian coordinates. Also note
that this problem is different from the approximation of the source term, which has been
treated in the previous section.

The same procedure can be adapted to the nonconservative form equation (17), and we
obtain the same conservation laws and entropy dissipation. The different contributions of
∂ω now read ∫ 2π

0
sinω∂ω f dω = −

∫ 2π

0
cosω f dω, (22a)

∫ 2π

0
cosω sinω∂ω f dω =

∫ 2π

0
(−cos2ω + sin2ω) f dω, (22b)

∫ 2π

0
sinω∂ω f (1+ log f ) dω ≤ −

∫ 2π

0
cosω f log f dω, (22c)

∂ω1 = 0. (22d)

The first relation appears for conservation ofρ, ρux, andE, the second one forρur , the
third one for the entropy, and the last relation for uniform flows.

Finally, note that if f is not even inω, then there exists an additional conservation law
for ρuϕ with a source term. Relations similar to (21b) and (22b) can be derived.

4.2. Discretization of the Velocity Derivative

In this section, the discrete collision operatorCK( f ) is assumed to be conservative and
entropic (see Section 3 for BGK and BGK-ES operators; see also [30] for Boltzmann and
[16] for Fokker–Planck). Then Eq. (15) with only the transport term is considered. The
variableω∈ [0, 2π ] is discretized by the points{ωq}Qq=0, and f (ωq) is approximated byfq.
Since the problem of conservation and entropy is only due to the discretization ofω (see
Section 4.1),vx andζ are kept continuous.

Let D be a finite difference operator that approximates∂ω at least up to the first order.
In the case of the conservative form equation (18), the term∂ω(sinω f ) is approximated by
D(sinω f )q. Then the discrete approximation of (18) without a collision term is

∂t r fq + vx∂xr fq + ζ cosωq∂r r fq − ζD(sinω f )q = 0. (23)

The macroscopic quantities are defined as in (19), except that integrals on [0, 2π ] are
replaced by a simple rectangular formula. For instance, we set

(ρ, ρux, ρur , E)T =
∫

R

∫ +∞
0

∑
q≥0

(
1, vx, ζ cosωq,

1

2

(
v2

x + ζ 2
))T

fq(vx, ζ )1ω dvxζ dζ.

(24)
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Now the discrete approximations of relations (21a–21d) read as algebraic relations for the
operatorD: ∑

q

D(sinω f )q = 0, (25a)

∑
q

cosωq D(sinω f )q =
∑

q

sin2ωq fq, (25b)

∑
q

D(sinω f )q log fq ≤
∑

q

cosωq fq, (25c)

D(sinω)q = cosωq. (25d)

The advantage of these relations is that we can prove, exactly as for the continuous equation
(18), that they are sufficient to obtain the conservation laws for the discrete moments as
defined by (24), the dissipation of discrete entropy, and the preservation of uniform flows.
This is stated in the following result:

PROPOSITION4.1. Let f ={ fq}Qq=0 be a solution of(22), then

• the discrete momentsρ, ρux, and E satisfy the conservation laws((20a), (20b),and
(20d)) if (25a)is satisfied;
• the discrete radial momentumρur satisfies the conservation law with source term

(20c) if (25b)holds;
• the discrete entropy

∫
R

∫ +∞
0

∑
q≥0 fq log fq 1ω dvxζ dζ satisfies dissipation rela-

tion (20e)if (25c)holds;
• uniform flows (in t, x, r,q) are preserved if(25d) is satisfied.

For the nonconservative form equation (17), the term∂ω f is approximated byD( f )q.
The discrete approximation of (17) without a collision term is

∂t fq + vx∂x fq + ζ cosωq∂r fq − ζ sinωq

r
D( f )q = 0. (26)

As for the conservative form equation, the following discrete formulations of relations (21a–
21d) are sufficient to obtain the conservation laws and entropy dissipation, and to preserve
uniform flows ∑

q

sinωq D( f )q = −
∑

q

cosωq fq, (27a)

∑
q

cosωq sinωq D( f )q =
∑

q

(−cos2ωq + sin2ωq) fq, (27b)

∑
q

sinωq D( f )q(1+ log fq) ≤ −
∑

q

cosωq fq log fq, (27c)

D(1)q = 0. (27d)

Note that the operatorD should preserve the positivity off , but as opposed to conser-
vation properties, this is not expressed by an algebraic relation forD.
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Remark 4.3. Since the radial momentumρur is not a conserved quantity by its own
(there is a source term in (20c)), it is important to address the issue concerning the con-
servation of the total momentum

∫
(ρu) r dx dr dϕ, whereu is the vectoru= uxex + ur er

in the cylindrical basis(ex, er , eϕ). The assumption of axial symmetry∂ϕ = 0 implies that
the sum of the contributions of the radial momentum is zero. Hence the total momentum is
parallel to the axis, i.e.,∫

(ρu) r dx dr dϕ =
(∫

(ρux) r dx dr dϕ

)
ex.

Consequently, this total momentum is conserved, provided that the local conservation law
of ρux is satisfied. From Proposition 4.1, a sufficient condition is that (25a) or (27a) holds.

4.3. Two Operators Used in the Literature

The following upwind operators are defined for the nonconservative form equation (26).
They are presented here with the assumption thatf is even inω and therefore forωq ∈ [0, π ]
only.

The first one is defined by a first order upwind discretization, used by Shakhov in [31]:

D( f )q = fq+1− fq

1ω
. (28)

In the following, the discrete equation (26) with this operator will be denoted by UNCE. It
can be seen that this method preserves the positivity off and uniform flows, since (25d) is
satisfied.

The second operator is defined by a second order upwind discretization, used by Sone
et al. in [35]:

D( f )q = 1

1ω

(
−1

2
fq+2+ 2 fq+1− 3

2
fq

)
. (29)

This will be denoted by U2NCE. This operator preserves uniform flows, but not the positivity
of f .

Whereas this discretization is second order accurate, note that the conservation laws are
obtained at orderO(1ω) only, as for the operator UNCE. Moreover, for these two methods,
the entropy is not dissipated.

4.4. Trigonometric Corrections

The fact that the two previous methods do not satisfy the conservation laws can be
explained as follows. When one tries to prove that relation (27a) holds, one makes discrete
integration by parts, and there appears the adjoint operatorD∗ of D, defined by∑

q

D( f )qgq =
∑

q

fq D∗(g)q + boundary terms, (30)

for any functionsf, g. Then, relation (27a) is obtained if the boundary terms vanish and if
D∗ is exact for the sine function. Our idea is then to modify the previous operators so as to
make the adjointD∗ exact for the trigonometric functions.
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For UNCE, we replaceD of (28) by

D( f )q = fq+1− cos1ω fq

sin1ω
.

This operator, denoted by T-UNCE, is an asymptotically equivalent approximation to (28)
as1ω goes to zero; thus it is consistent. It can easily be proved thatD and D∗ are exact
for sine and cosine. Then discrete equation (26) has the following properties: positivity
of f and conservation ofρ, ρux, andE. However, sinceD∗(cosω sinω)q=−cos2ωq+
sin2ωq+O(1ω), we do not have a conservation law forρur . Moreover, we haveD(1)q=
1−cos1ω

sin1ω = 1+O(1ω); thus this scheme does not preserve uniform flows. This last property
is known to lead to schemes that are not precise and not robust.

For U2NCE, we replaceD of (29) by

D( f )q = 1

sin1ω

(
−1

2
fq+2+ (1+ cos1ω) fq+1− 1+ 2 cos1ω

2
fq

)
.

This operator, denoted by T-U2NCE is also a consistent approximation of∂ω. It is exact for
sine and cosine and preserves uniform flows. But due to the nonvanishing boundary terms,
this is not sufficient to ensure conservation. Namely, the conservation laws are satisfied only
up to the first order.

4.5. New Trigonometric Operators for the Conservative Form Equation

We propose the following operator:

D(sinω f )q = sinωq+1 fq+1− sinωq−1 fq−1

2 sin1ω
. (31)

This is nothing but a classical centered finite difference approximation of second order,
where we have replaced the increment1ω by the asymptotically equivalent quantity sin1ω.
Thus this formula is consistent. The corresponding discrete equation (23) will be denoted
by T-CCE. In order to eliminate the boundary terms in (30), we setω0= 0 andωQ=
2π −1ω. Then (25a) is satisfied, which implies (thanks to Proposition 4.1) that we have
the conservation laws forρ, ρux, andE. Forρur and uniform flows, note that owing to our
trigonometric correction (1ω→ sin1ω), thenD andD∗ =−D satisfy

D(cosω)q = −sinωq, D(sinω)q = cosωq.

Thus (25b) and (25d) are satisfied, and we have the conservation law ofρur and the uniform
flows are preserved. However, this centered operator does not preserve the positivity of
f , so we cannot prove the entropy property. We also mention that the operator without
the trigonometric correction (D( f )q= ( fq+1− fq−1)/21ω) only satisfies the conservation
laws ofρ, ρux, andE. It will be denoted by CCE.

Remark 4.4. Note that we can use the centered operatorD( f )q= ( fq+1− fq−1)/21ω
for the nonconservative form equation (26); it will be denoted by CNCE. The only property
of this scheme is the preservation of uniform flows. As for the conservative form equation,
we can derive the following trigonometric modification:D( f )q= ( fq+1− fq−1)/2 sin1ω.
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Then we obtain the additional property of conservation ofρ, ρux, andE. This scheme will
be denoted by T-CNCE.

Finally, we propose an upwind version of the previous operator defined in (31) so as to
obtain the positivity. We set

D(sinω f )q = 1

2 sin1ω2

(((
sinωq+1/2

)+
fq+1+

(
sinωq+1/2

)−
fq
)

− ((sinωq−1/2
)+

fq +
(
sinωq−1/2

)−
fq−1

))
, (32)

wherea± denotes1
2(a± |a|) andωq±1/2=ωq± 1ω

2 . Since 2 sin1ω2 and1ω are asymptot-
ically equivalent, this formula is consistent. The boundary terms in discrete integrations by
parts are eliminated by settingQ= 2m− 1 with m such thatωm=π . The discrete equa-
tion (23) with this operator will be denoted by T-UCE. This equation possesses numerous
properties that are stated in the following result:

PROPOSITION4.2.

(i) the positivity of f is preserved;
(ii) the conservation laws ofρ, ρux, and E are satisfied(Eqs.(20a), (20b), (20d));

(iii) the entropy is locally dissipated(Eq. (20e)).
(iv) the uniform flows are preserved;

Proof. Property (iv) is obtained by noting that (25d) is satisfied:

D(sinω)q = 1

2 sin1ω2

(
sinωq+1/2− sinωq−1/2

) = cosωq.

For (ii), we note thatD(sinω f )q can be written as a numerical flux differenceD(sinω f )q=
hq+1/2− hq−1/2; therefore (25a) is obvious. Property (i) is due to the upwinding of the
discretization.

The most striking property of this discretization is the entropy dissipation. It can actually
be proved that (24c) holds: by a change of indexes, we have

Q∑
q=0

D(sinω f )q log fq

=
Q∑

q=0

1

2 sin1ω2

((
sinωq−1/2

)+
log fq−1+

(
sinωq+1/2

)−
log fq

− (sinωq−1/2
)+

log fq −
(
sinωq+1/2

)−
log fq+1

)
fq.

Then we use the convexity inequalityt2 log t1≤ t2 log t2+ t1− t2 for the termsfq log fq±1;
the logarithms vanish and we obtain

Q∑
q=0

D(sinω f )q log fq ≤
Q∑

q=0

1

2 sin1ω2

((
sinωq−1/2

)+
( fq−1− fq)

− (sinωq+1/2
)−
( fq+1− fq)

)
.
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By a new change of indexes, we find

Q∑
q=0

D(sinω f )q log fq ≤
Q∑

q=0

1

2 sin1ω2

((
sinωq+1/2

)+ − (sinωq−1/2
)+ − (sinωq−1/2

)−
+ (sinωq+1/2

)−)
fq =

Q∑
q=0

cosωq fq.

This is (25c), which implies (iii) (cf. Proposition 4.1).j

Remark 4.5. To our knowledge, it is the first time that a discretization preserving the
positivity, the conservation ofρ, ρux, andE, and the entropy dissipation is presented. Also
note that if the classical upwind discretization is used without trigonometric correction (i.e.,
with 1ω instead of 2 sin1ω2 in (32), which will be denoted by UCE), then we have only
D(sinω)q= cosωq+O(1ω), and only properties (ii) and (i) are satisfied.

Remark 4.6. The evolution equation ofρur (20c) is obtained at orderO(1ω) only.
But we think it less important to be obtained than the other properties. In fact, Eq. (20c)
possesses a source term; therefore even in a continuous case, the quantityρur is not really
conserved.

4.6. Summary of the Different Discretizations and Their Related Properties

For the readability of the following, we summarize in this section all the previous schemes.
The discretizations of the velocity derivative for the conservative form equation (18) are
the following

CCE: D(sinω f )q = sinωq+1 fq+1− sinωq−1 fq−1

21ω
,

T-CCE: D(sinω f )q = sinωq+1 fq+1− sinωq−1 fq−1

2 sin1ω
,

UCE: D(sinω f )q = 1

1ω

(((
sinωq+1/2

)+
fq+1+

(
sinωq+1/2

)−
fq
)

− ((sinωq−1/2
)+

fq +
(
sinωq−1/2

)−
fq−1

))
,

T-UCE: D(sinω f )q = 1

2 sin1ω2

(((
sinωq+1/2

)+
fq+1+

(
sinωq+1/2

)−
fq
)

− ((sinωq−1/2
)+

fq +
(
sinωq−1/2

)−
fq−1

))
.

For the nonconservative form equation (17), we have

CNCE: D( f )q = fq+1− fq−1

21ω
,

T-CNCE: D( f )q = fq+1− fq−1

2 sin1ω
,

UNCE: D( f )q = fq+1− fq

1ω
,

T-UNCE: D( f )q = fq+1− cos1ω fq

sin1ω
,
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TABLE I

Properties of the Discrete-Velocity Models for the Axisymmetric Transport Operator

Uniform flows Positivity Cons.ρ, ρux, E Cons.ρur Entropy

CCE yes no no no no
T-CCE yes no yes yes no
UCE no yes yes no no
T-UCE yes yes yes no yes
CNCE yes no no no no
T-CNCE yes no yes no no
UNCE yes yes no no no
T-UNCE no yes yes no no
U2NCE yes no no no no
T-U2NCE yes no no no no

U2NCE: D( f )q = 1

1ω

(
−1

2
fq+2+ 2 fq+1− 3

2
fq

)
,

T-U2NCE: D( f )q = 1

sin1ω

(
−1

2
fq+2+ (1+ cos1ω) fq+1− 1+ 2 cos1ω

2
fq

)
.

We recall that the schemes CCE, T-CCE, UCE, and T-UCE are the new schemes that have
been proposed in Section 4.5 for the conservative form equation, as well as CNCE and
T-CNCE for the nonconservative form equation. Schemes UNCE and U2NCE have been
respectively proposed in [31] and [35]. They are recalled in Section 4.3 of the present
paper. Finally, their trigonometric corrections T-UNCE and T-U2NCE have been proposed
in Section 4.4. The properties of all these schemes are recalled in Table I.

Note that another approach has recently been proposed by Larina and Rykov [22]. By a
modification of the radial velocityζ cosω, they obtain a second order conservative scheme
(for ρ, ρux, ρur , andE), but nonpositive. If we replace1ω by sin1ω in their method, it
reduces to our scheme T-CCE.

4.7. Application to the BGK Equation

In order to apply the previous discretizations to the BGK equation, we discretize the
velocity variablesvx andζ by

vk
x = k1vx + a, ζl = l1ζ,

with k= (k, l ,q)∈K (cf. Section 3). The fully discrete-velocity models for the nonconser-
vative and conservative axisymmetric kinetic equations are

∂t fk + vk
x∂x fk + ζl cosωq∂r fk − ζl sinωq

r
D( fk,l )q = C( fK)k, (33)

∂t r fk + vk
x∂xr fk + ζl cosωq∂r r fk − ζl D(sinω fk,l )q = rC( fK)k, (34)

where fk,l = ( fk,l ,q)q=0...Q. In the case of the BGK equation, the discrete collision operator
is

C( fK)k = 1

τ
(Ek[ρK] − fk).
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According to Section 3,Ek[ρK] is the discrete equilibrium defined byEk[ρK]= exp(α ·
m(vk)), wherem(vk)= (1, vk

x, ζl cosωq, ζl sinωq,
1
2(|vk

x|2+ ζ 2
l ))

T , and the vectorα is the
unique solution of the nonlinear system of five equations:∑

k

m(vk) exp(α ·m(vk)) ζl1vx1ζ1ω = (ρ, ρux, ρur , ρuϕ, E).

Note that if the distribution function is even inω, thenuϕ = 0, and the system above reduces
to four equations only. This is also true ifux = 0.

5. DISCRETIZATION IN SPACE AND TIME OF THE DISCRETE-VELOCITY MODELS

In this section, we give an explicit scheme and a linearized implicit scheme for fast
computing steady flows. The linear solver for solving the large linear systems is detailed.
The algorithm for computing the discrete equilibrium is also given. The extension of these
schemes to axisymmetric models is discussed at the end of the section.

5.1. Explicit Scheme

For the sake of simplicity, our scheme is presented here in two spatial dimensions on a
Cartesian grid, but all the properties stated here are valid for a 3-dimensional space and
curvilinear meshes (cf. below). The equation to be approximated is

∂t fk + vk
x∂x fk + vl

y∂y fk = 1

τ
(Ek[ρK] − fk), k ∈ K. (35)

Note that in the case of plane flows, the dependency offK on vz can be eliminated by
introducing reduced distribution functions (see [36]). But this technique is not used here
because it is not possible for axisymmetric flows, and we want the same scheme for both
2D plane and axisymmetric flows. Consider a spatial Cartesian grid defined by nodes
(xi , yj )= (i1x, j1y) and cells ]xi−1/2, xi+1/2[×]yj−1/2, yj+1/2[. Consider also a time dis-
cretization withtn= n1t . If f n

i, j = ( f n
k,i, j )k∈K is an approximation offK(tn, xi , yj ), the

moments off n
i, j are naturallyρn

i, j =〈m f n
i, j 〉K, and the corresponding discrete equilibrium

is denoted by(Ek[ρn
i, j ])k∈K. If ρn

i, j is strictly realizable (in the sense of (12)), the discrete
equilibrium is thereforeEk[ρn

i, j ]= exp(αn
i, j ·m(vk)), whereαn

i, j is the unique solution of
the system of four nonlinear equations (see Remark 3.1):

〈
mexp

(
αn

i, j ·m
)〉
K = ρn

i, j . (36)

The transport part is simply the linear convection equation and can be approximated by
a standard finite volume scheme. For the nonlinear relaxation term, a standard centered
approximation technique is used. Our scheme thus reads

f n+1
k,i, j = f n

k,i, j −
1t

1x

(
Fn

k,i+1/2, j − Fn
k,i−1/2, j

)− 1t

1y

(
Fn

k,i, j+1/2− Fn
k,i, j−1/2

)
+ 1t

τ n
i, j

(
Ek
[
ρn

i, j

]− f n
k,i, j

)
, (37)
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where the numerical fluxes are defined by

Fn
k,i+1/2, j =

1

2

(
vk

x

(
f n
k,i+1, j + f n

k,i, j

)− ∣∣vk
x

∣∣(1 f n
k,i+1/2, j −8n

k,i+1/2, j

))
Fn

k,i, j+1/2 =
1

2

(
vl

y

(
f n
k,i, j+1+ f n

k,i, j

)− ∣∣vl
y

∣∣(1 f n
k,i, j+1/2−8n

k,i, j+1/2

))
with the notation1 f n

k,i+1/2, j = f n
k,i+1, j − f n

k,i, j , and the flux limiter function8n
k,i+1/2, j al-

lows us to obtain a second order scheme. For instance,8n
k,i+1/2, j = 0 for first order, and

8n
k,i+1/2, j =minmod(1 f n

k,i−1/2, j ,1 f n
k,i+1/2, j ,1 f n

k,i+3/2, j ) for second order.
With the appropriate definitions of our discrete-velocity model, our scheme now possesses

the expected properties. In the case of an infinite space domain (i.e.,(i, j )∈Z2), Theorem 3.2
can be expressed in its numerical form (proved in [26]):

PROPOSITION5.1. Let{ f 0
k,i, j }k,i, j be a strictly positive initial condition. If the time steps

follows the condition

1t

(
max

i, j

(
1

τ n
i, j

)
+max

K

(∣∣vk
x

∣∣
1x
+
∣∣vl

y

∣∣
1y

))
< 1, (38)

then the sequence{ f n}n≥0 defined by the first order scheme(37) remains strictly positive,
and the discrete equilibrium isEk[ρn

i, j ]= exp(αn
i, j ·m(vk)). Furthermore, the total mass,

momentum, and energy are conserved, and the total entropy is decreasing.

General geometries are treated with a curvilinear mesh. Then we use the curvilinear
coordinatesξ(x, y) andη(x, y) to approximate space derivatives on the grid. After this
change of variables, Eq. (35) yields

1

J
∂t fk + ∂ξ

(
vk · ∇ξ

J
fk

)
+ ∂η

(
vk · ∇η

J
fk

)
= 1

Jτ
(Ek[ρK] − fk),

where∇ξ = (∂xξ, ∂yξ),∇η= (∂xη, ∂yη), andJ= ∂xξ∂yη− ∂yξ∂xη. If we define a uniform
grid (ξi = i1ξ, η j = j1η), then a scheme very similar to (37) can be used

f n+1
k,i, j = f n

k,i, j −
1t

1ξ

(
Fn

k,i+1/2, j − Fn
k,i−1/2, j

)
Ji, j − 1t

1η

(
Fn

k,i, j+1/2− Fn
k,i, j−1/2

)
Ji, j

+ 1t

τ n
i, j

(
Ek
[
ρn

i, j

]− f n
k,i, j

)
,

where the numerical fluxes are defined by

Fn
k,i+1/2, j =

1

2

(
vk ·

(∇ξ
J

)
i+1/2, j

(
f n
k,i+1, j + f n

k,i, j

)
−
∣∣∣∣vk ·

(∇ξ
J

)
i+1/2, j

∣∣∣∣(1 f n
k,i+1/2, j −8n

k,i+1/2, j

))

Fn
k,i, j+1/2 =

1

2

(
vk ·

(∇η
J

)
i, j+1/2

(
f n
k,i, j+1+ f n

k,i, j

)
−
∣∣∣∣vk ·

(∇η
J

)
i, j+1/2

∣∣∣∣(1 f n
k,i, j+1/2−8n

k,i, j+1/2

))
.
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The geometric coefficients(∇ξJ )i±1/2, j , (
∇η
J )i, j±1/2, and Ji, j are standard approximations

used in order to preserve the free stream. This scheme has the same properties as scheme (37)
(i.e., positivity, conservation of moments, and dissipation of entropy), provided that a CFL
condition similar to (38) is satisfied.

Remark 5.7. The same scheme is used with the BGK-ES model by replacingEk[ρn
i, j ]

by Gk[ f n
i, j ].

5.2. Linearized Implicit Scheme for Steady Flows

In steady state computations, CFL condition (38) of the explicit scheme is very restrictive
for dense or rapid regimes. A classical way to overcome this difficulty is to use an implicit
scheme. It is derived from the explicit scheme by evaluating attn+1 the terms that produce
undesirable negative distributions for large1t .

5.2.1. Description of the scheme.In the collision operator, the loss term (− f n
k,i, j ) is

negative and then it is written attn+1. The gain term, namely the discrete equilibrium
Ek[ρn

i, j ], is positive and therefore may be kept explicit (a strategy used in [36]). However,
gain and loss terms are then evaluated at different times, which is observed to slow the
convergence of the scheme considerably (see [26]). Consequently, we decide to evaluate
the gain term attn+1 as well. However, defining an implicit relaxation timeτ n+1

i, j is not very
useful. Since the discrete equilibrium is a nonlinear function off , it may be linearized as
follows,

Ek[ρn+1
i, j ] ≈ Ek

[
ρn

i, j

]+ [Dn
i, j

(
f n+1
i, j − f n

i, j

)]
k,

whereDn
i, j is the Jacobian of the mappingg∈RNv 7→ E [g] evaluated atf n

i, j . Then the
linearized implicitfirst order scheme is the following

f n+1
k,i, j +

1t

1x

(
Fn+1

k,i+1/2, j − Fn+1
k,i−1/2, j

)+ 1t

1y

(
Fn+1

k,i, j+1/2− Fn+1
k,i, j−1/2

)
+ 1t

τ n
i, j

(
f n+1
k,i, j −

[
Dn

i, j f n+1
i, j

]
k

) = f n
k,i, j +

1t

τ n
i, j

(
Ek
[
ρn

i, j

]− [Dn
i, j f n

i, j

]
k

)
,

for k∈K andi, j = 1, . . . , imax, jmax. For the second order scheme, the flux limiters (non-
differentiable) are kept explicit. The followingδmatrix-form of the scheme is more adapted
to computations, (

I

1t
+ T + Rn

)
δ f n = RH Sn, (39)

where δ f n= f n+1− f n, I is the unit matrix,T is a matrix such that(T f n)k,i, j =
1
1x (Fn

k,i+1/2, j −Fn
k,i−1/2, j )+ 1

1y (Fn
k,i, j+1/2−Fn

k,i, j−1/2)with only the first order fluxes,Rn

is such that(Rn f n)i, j = 1
τ n

i, j
( f n

i, j −Dn
i, j f n

i, j ), and

RH Sn
k,i, j = −

1

1x

(
Fn

k,i+1/2, j − Fn
k,i−1/2, j

)− 1

1y

(
Fn

k,i, j+1/2− Fn
k,i, j−1/2

)
+ 1

τ n
i, j

(
Ek
[
ρn

i, j

]− f n
k,i, j

)
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FIG. 1. MatricesT andRn and the corresponding storage of vectorf n.

which contains the limiters for the second order scheme. The JacobianDn
i, j has the simple

form

Dn
i, j [k, k

′] = A−1
(
αn

i, j

)
: m(vk)⊗m(vk′)Ek

[
ρn

i, j

]
1vx1vy1vz, (40)

whereA(αn
i, j )=〈m⊗mexp(αn

i, j ·m)〉K. A similar scheme can be derived for the BGK-ES
model.

The particular structure of matricesT and Rn may be noted. If quantitiesf n
k,i, j are

stored asf n= ( f n
k )k∈K with f n

k = ( f n
k,i, j ), then it can easily be seen (cf. Fig. 1) thatT is a

NvNc× NvNc block diagonal matrix withNc× Nc pentadiagonal blocksTk (Nc= imax×
jmax is the number of cells) and thatRn is a full matrix of diagonal blocksRn

k,k′ . One can
also note that iff n

k is stored byi then by j , then the(i, j )th line of a blockTk is

[0, . . . ,0, Tk,i−1, j , 0, . . . ,0, Tk,i, j−1, Tk,i, j , Tk,i, j+1, 0, . . . ,0, Tk,i+1, j , 0, . . . ,0],

with

Tk,i−1, j = − 1

1x
vk,+

x , Tk,i, j−1 = − 1

1y
vl ,+

y , Tk,i, j = 1

1x

∣∣vk
x

∣∣+ 1

1y

∣∣vl
y

∣∣,
Tk,i, j+1 = 1

1y
vl ,−

y , Tk,i+1, j = 1

1x
vk,−

x .

The diagonal element of the(i, j )th line of a blockRn
k,k′ is

1

τ n
i, j

(
δk,k′ −Dn

i, j [k, k
′]
)
,

whereδk,k′ is the Kronecker symbol, andDn
i, j [k, k

′] is defined in (40). These sparse structures
are naturally due to the fact that the relaxation process in the BGK equation is local in space
but global in velocity, whereas the transport process is numerically global in space but local
in velocity.

Remark 5.8. As for the explicit scheme, a linearized implicit scheme can be derived for
curvilinear meshes. This scheme can be written as in (39), but the elements of a blockTk
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depend oni and j ; we have

Tk,i−1, j = − 1

1ξ

[
vk ·

(∇ξ
J

)
i−1/2, j

]+
, Tk,i, j−1 = − 1

1η

[
vk ·

(∇η
J

)
i, j−1/2

]+
,

Tk,i, j = 1

1ξ

([
vk ·

(∇ξ
J

)
i+1/2, j

]+
−
[
vk ·

(∇ξ
J

)
i−1/2, j

]−)

+ 1

1η

([
vk ·

(∇η
J

)
i, j+1/2

]+
−
[
vk ·

(∇η
J

)
i, j−1/2

]−)
,

Tk,i, j+1 = 1

1η

[
vk ·

(∇η
J

)
i, j+1/2

]−
, Tk,i+1, j = 1

1ξ

[
vk ·

(∇ξ
J

)
i+1/2, j

]−
.

5.2.2. Resolution of the linear system (39).The linear system (39) to be solved at each
iteration is very large (NvNc× NvNc), and an iterative method well adapted to different
sparse structures of the matrices may be used. We use here an algorithm based on a coupling
between Jacobi and Gauss–Seidel methods by using the storage of Fig. 1. First,Rn is
separated into its block diagonal1n and its block off-diagonalEn, i.e.,Rn=1n− En (this
is the Jacobi step). Then system (39) is equivalent to(

I

1t
+ T +1n

)
δ f n = RH Sn + Enδ f n.

Since the matrix of this linear system is block diagonal with pentadiagonal blocksI
1t + Tk+

1n
k, it is possible to use a line Gauss–Seidel method by settingTk=Mk− Nk. This gives

the following algorithm:

ALGORITHM 1.

1. setg(0)= 0,
2. for p= 0, . . . , P, solve(

I

1t
+ Mk +1n

k

)
g(p+1)

k = RH Sn
k + Nkg(p)k +

[
Eng(p)

]
k, k ∈ K, (41)

3. setδ f n= g(P+1).

The linear systems (41) may easily and exactly be solved by successiveLU decompo-
sitions of tridiagonal matrices ofRimax×imax or R jmax× jmax. Note that calculating the product
Eng is not very expensive because the blocks ofEn are diagonal. In fact we have

[Eng]k,i, j =
1

τ n
i, j

A−1
(
αn

i, j

)
m(vk)Ek

[
ρn

i, j

] · (〈mgi, j 〉K −m(vk)gk,i, j1vx1vy1vz).

It is thus sufficient to computeA−1(αn
i, j )m(vk)Ek[ρn

i, j ] at the beginning of the algorithm (a
local computation in k andi, j ), then to compute〈mgi, j 〉K on each cell (which is local in
i, j ), and finally to form the dot product. The computation ofEng is thus local ini, j , and
hence completely parallelizable; its cost is inO(NcNv).

It is well known in CFD that since only a few iterations are needed to have the external
process converge (the loop inn), it is not useful to carry on an algorithm like the previous
one at convergence. The cost of our implicit scheme is then inO(P NvNc) whereP= 2 or
3, which is confirmed by numerical experiments (see [26]).
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5.3. Computation ofαn
i, j

The nonlinear set of Eqs. (36) may be solved by the following Newton algorithm, where
F is defined byF(β)=〈mexp(β ·m)〉K−ρn

i, j .

ALGORITHM 2.

1. setα(0) ∈R4,
2. solvethe linear systemF ′(α(r ))α(r+1)=α(r )− F(α(r ))

until a stop criterion is satisfied,
3. setαn

i, j = α(r ).
Such an algorithm requires almost 12Nv operations by iterationr and by cell(i, j ) and is

thus inO(NcNv). For most cases we have tested, this algorithm is robust enough, if the initial
datum is wisely chosen (cf. below). However, a backtracking linesearch algorithm may
be employed if the matrixF ′(α(r ))=〈m⊗mexp(α(r ) ·m)〉K is too much ill-conditioned.
This may happen when the velocity of the flow is very high, since the last element of
m(vk)⊗m(vk) is |vk|4, whereas the first one is always 1. For the initial conditionα(0), we
use the parameterα of the continuous equation (2) at the beginning of the computation.
Then, when the flow is almost stabilized, we takeα(0)=αn−1

i, j computed at the previous
global iteration. With this choice, the algorithm converges rapidly—only one iteration is
needed for most cases tested. The same algorithm is used to compute the vectorEαn

i, j which
defines the discrete GaussianGK[ f n

i, j ] of the BGK-ES model.

5.4. Axisymmetric Flows

Consider a discrete-velocity model for the conservative form equation, as given by (34).
The explicit scheme of Section 5.1 can now be applied to this model:

f n+1
k,i, j = f n

k,i, j −
1t

1x

(
Fn

k,i+1/2, j − Fn
k,i−1/2, j

)− 1t

r j1r

(
r j+1/2Fn

k,i, j+1/2− r j−1/2Fn
k,i, j−1/2

)
+ 1t

τ n
i, j

(
Ek
[
ρn

i, j

]− f n
k,i, j

)+1t
ζl

r j
D
(
sinω f n

k,l ,i, j

)
q
.

Note that owing to the cell-centered approach, the radiusr j is always strictly positive, even
near the symmetry axes (wherer j = 1

21r ).
We can prove that if the operatorD has the properties mentioned in Section 4, then

this explicit scheme is also positive, conservative, and entropic. Note that the only dif-
ference with the Cartesian case is the presence of the term1t ζlr j

D(sinω f n
k,l ,i, j )q. For the

linearized implicit scheme, the opposite of this term can be rewritten under a matrix-vector
productAn f n whereAn is a full matrix of diagonal blocks. Then we have the following
scheme: (

I

1t
+ T + Rn + An

)
δ f n = RH Sn.

The Jacobi–Gauss–Seidel algorithm 1 can be applied to this linear system. As forRn, we
split An into its diagonal part1An and its off-diagonal part−EAn in the Jacobi step of the
algorithm. The algorithm is now
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ALGORITHM 3.

1. setg(0)= 0,
2. for p= 0, . . . , P and k∈K, solve(

I

1t
+ Mk +1n

k + [1An ]k

)
g(p+1)

k = RH Sn
k + Nkg(p)k +

[
(En + EAn)g(p)

]
k,

3. setδ f n= g(P+1).

For instance, with the operator T-UCE, we have

[1An ]k,i, j = −
ζl

r j 2 sin1ω2

((
sinωq+1/2

)+ − (sinωq−1/2
)−)

,

[EAn f n]k,i, j =
ζl

r j 2 sin1ω2

((
sinωq+1/2

)+
f n
k,l ,q+1,i, j −

(
sinωq−1/2

)−
f n
k,l ,q−1,i, j

)
.

6. NUMERICAL RESULTS

We present numerical tests for plane and axisymmetric flows. For plane flows, the im-
provement of the results due to the BGK-ES model is shown. We also show test cases
where our implicit deterministic method is a relevant alternative to DSMC. For axisym-
metric flows, the different discretizations of Section 4 are compared on 1D cases. We also
present an application of these schemes to an axisymmetric flow around a sphere.

Except in some cases, the linearized implicit scheme of second order is used in all the
computations, with a CFL number of 10,000 (i.e.,1t is 10,000 times the explicit time step).
The criterion used to determine whether the flow has reached steady state is the reduction
of the quadratic global residual1

1t (
∑

k,i, j |RH Sn
k,i, j |2)1/2 by a factor of 105.

Numerically, all the boundary conditions (gas-surface, symmetry axes, etc.) are treated by
a classical ghost cell technique (see [37]). For instance, incident molecules in a boundary
cell of indexes(i, j = 1) are supposed to be re-emitted by the wall from a ghost cell of
indexes(i, 0). This cell is the mirror cell of(i, 1) with respect to the wall. The diffuse
reflection (13) is then modeled by

f n
k,i,0 = φi,1Ek[ρw], vk · ni,1 > 0,

whereφi,1 is determined so as to avoid a mass flux across the wall, i.e., between cells(i, 0)
and(i, 1). Relation (14) gives

φi,1 = −
∑

vk·ni,1<0 vk · ni,1 f n
k,i,11vx1vy1vz∑

vk·ni,1>0 vk · ni,1 Ek[ρw]1vx1vy1vz
.

Moreover, relation (6), whereδ is given for each gas in [7], is used to compute the
relaxation time of the model. As explained in Section 2, this depends on the molecular
interaction potential. For each test case, we specify which potential is used among VHS,
hard-sphere, and Maxwellian potentials. In each comparison, a unique potential is used for
the three methods (BGK, BGK-ES, and DSMC).

Note that the velocity grid is appropriately chosen for each case. Since the same grid is
used in each point of space, it should be large and precise enough to correctly describe the
flow (i.e., the distributions everywhere in the space domain). Then the bounds are given
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by a combination between the maximum macroscopic velocity and the temperature of the
flow (maxx(u+ c

√
RT), where we takec= 4). The step of the grid is given by the smallest

temperature (i.e.,1v= minx

√
RT). These quantities may be estimated by two methods.

First, in some cases, they are given by the data, e.g., velocity and temperature at infinity and
wall temperature. But for more “extreme” flows, the maximum temperature is much greater
than these data. Then in those cases, we make a converged Navier–Stokes computation, and
the converged values of the macroscopic velocity and temperature are sufficient for defining
a correct velocity grid.

Finally, note that all the tests presented here have been computed on the single processor
of the IBM-SP2 (120 MHz–512 Mo).

6.1. Plane Flows

6.1.1. Compression ramp.Here our method for BGK and BGK-ES equations is com-
pared to the DSMC method, which simulates the Boltzmann equation with the code of J.-C.
Lengrand [23], and to the Navier–Stokes equations (without slip condition). We study a
supersonic flow past a flat plate of 5 cm followed by a compression ramp of 10◦. The gas is
air, and the parameters of the flow areρ∞= 1.288 10−4 kg ·m−3, T∞= 72.2 K, M∞= 3.67,
for the density, temperature, and Mach number. The wall temperature is 72.2 K. The molec-
ular mass is 4.815 10−26 kg and the viscosity exponentδ is 0.77 (VHS model). This gives
a Knudsen number of 6.7 10−3 at infinity. For the four methods, we use the same mesh
of 70× 70 cells. For BGK and BGK-ES, the velocity grid has 13× 11× 11 points with
bounds [−1500, 1500]× [−1200, 1200]× [−1200, 1200].

For the BGK model, the computation takes 260 iterations and 42 h CPU. For BGK-ES,
it takes 564 iterations and 60 h CPU. For the DSMC, the computation takes 8000 iterations
and 46 h CPU. We used 2600 samples and an average of 20 particles per cell, with a time
step of 5 10−7 s. The Navier–Stokes computation takes less than 10 min CPU.

The contours of density and temperature are plotted in Fig. 2 for the four methods. The
results obtained with BGK, BGK-ES, and DSMC are very close, and this can be seen more
clearly in Fig. 3 where the distribution of temperature following three vertical linesx= 2.5,
5, 7.5 cm is shown. One can only note a difference near the wall where BGK-ES is more
accurate than BGK. The influence of the Prandtl number is thus clear. On the other hand,
Navier–Stokes equations give very poor results at the beginning of the plate and within the
shock. An explanation is that the local Knudsen number (see [7]) at the leading edge is 0.13,
which is beyond the validity range of Navier–Stokes equations. In fact, Bird notices in [7]
that the error in Navier–Stokes results is significant in the regions of the flow where the local
Knudsen number exceeds 0.1. For the DSMC, note the noise induced by the stochasticity
of the method. Also, it is apparent that the results of the DSMC are inaccurate in the small
region in front of the downstream boundary. This is a direct consequence of a defect in the
boundary conditions (see [11]). Although the CPU times of BGK and DSMC are provided
for this case, a fair comparison of computational speeds of the two methods is not easy
because their criteria of convergence are very different. For instance, making more samples
to decrease the noise in DSMC results can strongly increase the CPU time of this method.

6.1.2. Recirculation. We want to prove that it is relevant to use BGK for flows with
a recirculation zone. It is well known that particle methods such as DSMC have some
difficulties converging in these situations. A problem is that, due to the low velocity of the
flow in the recirculation, a large number of iterations may be needed to reach steady state.
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FIG. 2. Compression ramp: density (left) and temperature (right) for BGK, DSMC, BGK-ES, and Navier–
Stokes.

Moreover, the density is often very low in such a zone, which implies that after a long time,
particle methods have not enough representative molecules to correctly describe the gas.

Here we consider a supersonic plane flow past a cylinder of radius 1 m. The parame-
ters of the flow areρ∞= 0.31696 10−5 kg ·m−3, T∞= 249 K, M∞= 4, for the density,
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FIG. 3. Compression ramp: temperature distribution along three vertical lines (x= 2.5, 5, 7.5 cm) for BGK,
DSMC, BGK-ES, and Navier–Stokes.

temperature, and Mach number. The wall temperature is 293 K. The molecular mass is
0.663 10−25 kg and the viscosity exponentδ is 0.5 (hard-sphere model). This gives a Knudsen
number of 0.0358 at infinity. These characteristics correspond to an atmospheric flow at
90 km of altitude (but here, the gas is argon). We use a mesh of 49× 60 cells and a velocity
grid of bounds [−2562, 2562]× [−2462, 2462]× [−2303, 2303] with 11 points in each
direction. We test our BGK method and the DSMC on this mesh. For DSMC, with 20
particles per cell, the steady state is reached after 250 iterations with a time step of 1.10−4 s.
Afterward, we used 2500 samples (each three time steps) to compute macroscopic values.
Note that the mesh respects the criterion of cell size lower than the mean-free-path only
near the wall. Thus one can expect that DSMC results will not be very accurate.

For BGK, the computation takes 1167 iterations and 90 h CPU. The DSMC computation
takes 50 h CPU, which is shorter than for BGK. The total number of molecules in the flow is
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FIG. 4. Recirculation behind a cylinder. Comparison between BGK and DSMC: density (top) and velocity
field in the recirculation (bottom).

stabilized at the end of the computation, which proves that the flow has reached steady-state.
However, the cells in the recirculation zone contain between one and five molecules only,
which is clearly not sufficient to correctly describe the gas. This problem is also observed
in Fig. 4, because the recirculation zone (visible on the zoom on velocity field) is poorly
described by DSMC, contrary to our method. In addition, we observe that the time step is
too large in the shock since it is ten times as large as the inverse collision frequency. Finally
note the noise on density contours obtained with DSMC.

Consequently, whereas BGK is more expensive than DSMC on this test case, our method
appears to be more accurate. Note that with DSMC, a smaller time step and almost five
times as many molecules as in this computation would be necessary to obtain more correct
results. Then the CPU time of DSMC would be greater than the cost of BGK.

Also note that contrary to DSMC, the parameters of our method do not need to be adapted
if there is a recirculation zone. The resolution of the velocity grid is not affected by this



DISCRETE-VELOCITY MODELS 457

phenomenon, contrary to the number of molecules of DSMC. This suggests that our method
is simpler to use.

6.1.3. Hypersonic flow.We present this case for testing the robustness of our method
on hypersonic flows (and particularly the Newton algorithm and the linear solver). This is
a hypersonic flow at Mach 18.3 without incidence on a flat plate of length 10 cm, width
0.5 cm, and an angle of length 1.4 cm at the leading edge. The parameters of the flow are:
ρ∞= 5.19 10−5 kg ·m−3, T∞= 13.6 K, M∞= 18.3, for the density, temperature, and Mach
number. The molecular mass is 4.65 10−26 kg and the viscosity exponent is 0.5 (hard-sphere
model). This gives a Knudsen number of 1.4 10−2 at infinity. This case has been studied by
Andrièset al. in [1] with a Monte-Carlo-like code which simulates Boltzmann, BGK, and
BGK-ES equations (see also [10]).

For BGK, we use a mesh of 75× 29 cells in tangent and orthogonal directions to the plate.
This is very coarse compared to the mesh of [1] which has almost 180× 180 cells. A Navier–
Stokes computation gives a velocity grid of bounds [−2300, 2300]× [−1600, 1600]×
[−1300, 1300] with 31× 29× 27 velocities. Such a grid would lead to very long compu-
tations; then we only take 21× 21× 21 velocities. The computation takes 140 iterations
and 36 h CPU. We observe that the code succeeds in computing such a violent flow. This
confirms the robustness of the implicit scheme and of the Newton algorithm.

Our results are plotted in Figs. 5 and 6. First, we note that our results are globally quite
close to that of [1], whereas our mesh is much less refined (because the deterministic
resolution of BGK does not require a mesh as fine as DSMC).

One can have an idea of the kinetic nonequilibrium near the leading edge by noting
that the local Knudsen number is 0.5 and by plotting the reduced distribution function
F(vx, vy)=

∫
f (vx, vy, vz) dvz (see Fig. 6). One can clearly see the half-Maxwellian of

the wall centered onux = 0 and the Maxwellian of the upstream flow, centered on the

FIG. 5. Contours and velocity field for hypersonic flow past a flat plate.
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FIG. 6. Reduced distribution functionF(vx, vy) at the leading edge of the flat plate. Note the half-Maxwellian
of the wall centered onvx = 0 and the Maxwellian of the upstream flow, centered on the upstream velocity
ux = 1500.

upstream velocityux = 1500. As the wall temperature is greater than the upstream one, the
half-Maxwellian has a larger spread.

We want to emphasize that the conservation and entropy properties of our discrete-
velocity model are essential in the fact that we need only 213 discrete velocities to reach
steady state. For comparison, note that in [36], for a case at Mach 12 (instead of 18.3 here),
more than 70 discrete velocities in each direction with a nonconservative discretization are
needed.

6.2. Axisymmetric Flows

6.2.1. 1D flow. We consider a gas between two coaxial cylinders. The large cylinder
rotates at a constant velocity and the small one is stationary. Therefore the flow depends
only on the radiusr . This case has the advantage of being computable either by a 2D
plane method or by a 1D axisymmetric method (cf. Fig. 7). Moreover, the total mass of
the gas is constant; then it is a good case for testing the conservation properties of our

FIG. 7. Geometry of the flow between two cylinders (left), 2D plane mesh (top), and 1D axisymmetric mesh
(bottom).
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FIG. 8. Total massM(t) (normalized to 1) of the gas between two coaxial cylinders: schemes U2NCE,
T-U2NCE, and UNCE are not plotted here sinceM(t) rapidly decreases to 0.

schemes. The parameters of the flow are the following: the gas is argon of molecular mass
0.663 10−25 kg and of viscosity exponentδ= 0.5 (hard-sphere model). The flow is initially
at temperature 300 K and of density 0.1247 10−5 kg ·m−3. The large cylinder rotates at a
constant speed of 106 m· s−1, and the two cylinders have a temperature of 300 K. They have
radiusR1= 1 m andR2= 2 m. This gives a Knudsen number based onR1 of 0.1. For the
2D plane computation in the(y, z)-plane, the mesh has 22× 20 cells inϕ andr directions
(cf. Fig. 7). The velocity grid has 93 velocities and bounds [−1000, 1000]3. For the 1D
axisymmetric computations, we use a mesh of 20 cells in ther direction and a velocity grid
of 9× 6× 18 points in(vx, ζ, ω)-directions.

For plane and axisymmetric computations we use the explicit scheme, in order to plot
the total mass during the unstationary part of the flow (see Fig. 8). First we observe that
the upwind nonconservative schemes (U2NCE, T-U2NCE, and UNCE) do not conserve the
total mass at all:M(t) rapidly decreases to 0. Thus the trigonometric correction T-UNCE
of UNCE appears to be essential. For the second order centered nonconservative scheme
CNCE, the mass is not conserved, but it changes only by 0.01% between the initial time and
the steady state. For all the conservative schemes (UCE, T-UCE, CCE, T-CCE, T-CNCE,
T-UNCE), the total mass is perfectly constant. Note that for the 2D plane computation the
total mass is slightly decreasing, whereas the scheme is theoretically conservative. This is
a consequence of the approximation of the curved boundaries with the curvilinear mesh.

At steady state, we also plot the tangential velocity and the density for all our schemes
(Fig. 9), except for UNCE, U2NCE, and T-U2NCE which give totally incorrect results (they
cannot be plotted on the same scale). This is not surprising, since these schemes satisfy the
conservation laws only up to the first order (see Sections 4.3 and 4.6). Considering the
results of the 2D plane computation as the reference curves, we observe that second order
axisymmetric schemes (in velocity) are much more accurate than the others (CCE, T-CCE,
CNCE, and T-CNCE). Moreover, there is only a small difference between the schemes and
their trigonometric corrections, except for CCE. Also note that the trigonometric correction
T-UNCE of UNCE gives very poor results, which are, however, more accurate that UNCE
itself. The reason is that T-UNCE is conservative, as opposed to UNCE, but does not preserve
uniform flows.
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FIG. 9. Tangential velocity (left) and density (right) of the gas between two coaxial cylinders.

If the number of points is increased from 18 to 60 in theω-direction of the velocity grid,
then we observe that the difference between trigonometric corrections and basic schemes is
smaller. The first order schemes are closer to second order schemes, and all the axisymmetric
results are closer to plane results. Consequently, it is clear that axisymmetric computations
require a more precise velocity discretization than plane computations. This is probably due
to the fact that in the axisymmetric case, a velocity derivative off must be approximated.
In plane computations, only an approximation of the moments off is needed, i.e., integrals
on velocity space, which requires a less precise discretization. Finally, note that whereas
the second order schemes do not theoretically preserve the positivity off , this does not
affect our results for this test-case.

For testing our implicit schemes, we use a slightly different test-case, taken from Sone
et al. [33]. Here the only difference with the previous case is that the boundary conditions
are now evaporation-condensation conditions. This means that at the surface of the cylin-
ders, the distribution function is completely prescribed. Consequently, there is a mass flux
across the boundaries, and the total mass is no longer conserved. Thus we can expect that
conservation properties are less crucial here. On the small cylinder, the pressure is set to
0.0708 and to 0.0779 on the large cylinder, with the same temperature as previously. We
plot the results for the tangential velocity and the temperature (Fig. 10), normalized by the

FIG. 10. Nondimensional tangential velocityuϕ/
√

2RT1 (left) and temperatureT/T1 (right) for the
evaporation-condensation problem between two coaxial cylinders, whereT1 is the temperature of the small cylinder
(case taken from [33]).
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parameters of the small cylinder (see [33]). The plane results are very close to that of [33]. For
axisymmetric results, we found the same hierarchy between the schemes as in the previous
test-case. The difference is that here, upwind nonconservative schemes (UNCE, U2NCE,
and T-U2NCE) give correct results. Moreover, if the number of pointsωq is increased as
previously (from 18 to 60), we observe that second order centered schemes become very un-
stable, and the computation stops. Consequently, despite their high accuracy, these schemes
lack robustness.

This short study proves that the trigonometric second order centered schemes have the
highest accuracy. Among these schemes, there is no significant difference between dis-
cretizations of the conservative and nonconservative form equations (T-CCE and T-CNCE).
However, as it is proved with the last test-case, these schemes lack robustness. Therefore,
the best compromise between robustness and accuracy is the scheme T-UCE, which has
numerous strong properties (see Table I).

6.2.2. 2D supersonic flow past a sphere.In this test, we advance the validation of our
method for solving the axisymmetric BGK equation. We consider a flow past a sphere
of radius 0.1 m, with the parameters of an atmospheric flow at 90 km of altitude:ρ∞=
0.317 10−5 kg ·m−3, T∞= 249 K,M∞= 5, for the density, temperature, and Mach number.
The molecular mass is 0.663 10−25 kg and the viscosity exponent is 0.81 (VHS model).
This gives a Knudsen number of 0.236 at infinity.

For BGK, we use a mesh of 60× 50 cells in tangential and orthogonal directions. The
computational domain is restricted to the upstream flow; we have neglected the influence of
the flow downstream from the sphere. The velocity grid has 11× 9× 21 points in(vx, ζ, ω)

directions. Since the distribution function is even inω, this variable is in [0, π ]. The bounds
of the grid forvx andζ are [−2300, 2300]× [0,2000]. The velocity discretization of the
transport operator uses the T-UCE scheme, which has been proved in Section 6.2.1 to be the
best compromise between accuracy and robustness. The computation takes 137 iterations
and 31 h CPU.

For the DSMC, we use the same mesh. Since the size of the cells is greater than the
mean-free-path, one cannot expect accurate results. The parameters of the method are 20
particles per cell, with a time step of 2 10−6 s. After 136 iterations we make 500 samples
(one every three time steps). The maximum simulation time is reached in 1631 iterations
and 18 h CPU. Therefore, the CPU time is lower than for BGK, but it would be much longer
to obtain more accurate results. A Navier–Stokes computation (without slip condition) is
also made.

The results are shown in Figs. 11 and 12. The noisy contours obtained with DSMC are
not surprising (Fig. 11). We also note that BGK contours are oscillating in the tail of the
shock. This phenomenon also arises with Navier–Stokes results although it is less visible.
This is a classical problem of structured meshes, which is due to the numerical viscosity of
the scheme, because the streamlines are not aligned with the mesh. However, the results of
BGK and DSMC are quite close, which is not true for Navier–Stokes.

In Fig. 12, we plot density, temperature, and pressure profiles as functions of the radius
r along two lines orthogonal to the wall. One is the symmetry axis and the other one is at
a 45◦ angle to this axis. For the first line, DSMC and BGK curves are quite close, except
near the wall where there is a difference of approximately 20% for the temperature and
the density. However, note that the difference between DSMC and Navier–Stokes is much
larger, especially for the temperature. For the line at 45◦, DSMC and BGK are strikingly
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FIG. 11. Axisymmetric flow past a sphere. Temperature and pressure contours for BGK, DSMC, and Navier–
Stokes.
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FIG. 12. Axisymmetric flow past a sphere. Density, temperature, and pressure profiles as functions ofr along
the symmetry axis and a line at 45◦.

close. To the contrary, we note a large difference between DSMC and Navier–Stokes. This is
not surprising, since the local Knudsen number is found to be 0.6 in this zone. For instance,
there is a difference of nearly 50% for the temperature in the shock (r = 0.025 m).

One can estimate the gain obtained by using an axisymmetric computation instead of a
full 3D computation. For estimating the CPU cost of a 3D computation, we have computed
the same flow in 2D plane geometry, with a cylinder instead of a sphere and with the same
number of cells. A Cartesian computation requires a less precise velocity grid, so we use
11× 11× 11 discrete velocities (this is almost half as many discrete velocities as in the
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axisymmetric computation). The computation takes 194 iterations and 22 h CPU, which is
of course faster than the axisymmetric case. For a 3D computation, assume that we would
use 50 cells in thez-direction. Since our algorithms have a linear complexity, then we can
assume that the 3D computation would be 50 times as long as the 2D plane case, which
yields 1100 h CPU. This must be compared to the 31 h CPU for the same result with the
axisymmetric computation. Thus it is clear that despite the high cost of the discretization
in ω, the 2D axisymmetric method is much less expensive than a full 3D computation.

7. CONCLUSION

We have presented a new numerical method for BGK and BGK-ES equations. It is
based on discrete-velocity models for the collision and transport operators, for plane and
axisymmetric geometries, and on a linearized implicit scheme. Our discrete-velocity models
satisfy important mathematical properties (conservation and entropy). They permit us to
have robust algorithms that do not require a fine velocity grid. Whereas these properties are
not a necessary condition for high accuracy, they make it possible to yield plausible results
even with low-resolution velocity grids.

Our numerical results have been compared to the DSMC reference method. They have
been noted to be very close to the DSMC results for transitional flows, with a comparable
CPU time. The BGK equation is a simplified model, but here it appears sufficient for
these flows, and the BGK-ES model allows for more physics. We have proved that our
deterministic method is well suited for situations such as recirculation flows where the
DSMC method may be difficult to use. Our study on the axisymmetric transport operator
allows us to make simulations on 3D geometries with axial symmetry.

Moreover, due to the linear complexity of our algorithms, our method may be extended
to 3D nonaxisymmetric computations, without a prohibitive increase of the computational
cost. The explicit and implicit schemes of Sections 5.1 and 5.2 can be extended with the
same properties. The only difference is that the blocks of the transport matrixT (see Fig. 1)
would be heptadiagonal instead of pentadiagonal. Thus the Gauss–Seidel method proposed
in Section 5.2.2 to split the matrixT should be modified.

Finally, we mention that an extension of our method to polyatomic gases is in preparation.

ACKNOWLEDGMENTS

I thank P. Charrier and B. Dubroca for their encouragements and for numerous discussions that have been very
helpful.

REFERENCES

1. P. Andriès, J.-F. Bourgat, P. Le Tallec, and B. Perthame,Etude de mod̀eles d’́energie interne BGK pour le
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